397 research outputs found

    Plasma REST: A novel candidate biomarker of Alzheimer\u27s disease is modified by psychological intervention in an at-risk population

    Get PDF
    The repressor element 1-silencing transcription (REST) factor is a key regulator of the aging brain’s stress response. It is reduced in conditions of stress and Alzheimer’s disease (AD), which suggests that increasing REST may be neuroprotective. REST can be measured peripherally in blood plasma. Our study aimed to (1) examine plasma REST levels in relation to clinical and biological markers of neurodegeneration and (2) alter plasma REST levels through a stress-reduction intervention—mindfulness training. In study 1, REST levels were compared across the following four well-characterized groups: healthy elderly (n=65), mild cognitive impairment who remained stable (stable MCI, n=36), MCI who later converted to dementia (converter MCI, n=29) and AD (n=65) from the AddNeuroMed cohort. REST levels declined with increasing severity of risk and impairment (healthy elderly>stable MCI>converter MCI>AD, F=6.35, P<0.001). REST levels were also positively associated with magnetic resonance imaging-based hippocampal and entorhinal atrophy and other putative blood-based biomarkers of AD (Ps<0.05). In study 2, REST was measured in 81 older adults with psychiatric risk factors for AD before and after a mindfulness-based stress reduction intervention or an education-based placebo intervention. Mindfulness-based training caused an increase in REST compared with the placebo intervention (F=8.57, P=0.006), and increased REST was associated with a reduction in psychiatric symptoms associated with stress and AD risk (Ps<0.02). Our data confirm plasma REST associations with clinical severity and neurodegeneration, and originally, that REST is modifiable by a psychological intervention with clinical benefit

    Blood neurofilament light in remote settings: Alternative protocols to support sample collection in challenging pre-analytical conditions

    Get PDF
    INTRODUCTION: This study investigated alternative pre‐analytical handling of blood for neurofilament light (NfL) analysis where resources are limited. METHOD: Plasma NfL was measured with single molecule array after alternative blood processing procedures: dried plasma spots (DPS), dried blood spots (DBS), and delayed 48‐hour centrifugation. These were compared to standardized plasma processing (reference standard [RS]). In a discovery cohort (n = 10) and a confirmatory cohort (n = 21), whole blood was obtained from individuals with unknown clinical etiology. In the confirmatory cohort, delayed centrifugation protocol was paired with either 37°C incubation or sample shaking to test the effect of these parameters. RESULTS: Delayed centrifugation (R^{2}= 0.991) and DPS (discovery cohort, R^{2} = 0.954; confirmatory cohort, DPS: R^{2} = 0.961) methods were strongly associated with the RS. Delayed centrifugation with higher temperatures (R^{2} = 0.995) and shaking (R^{2} = 0.975) did not affect this association. DPS (P < 0.001) returned concentrations considerably lower than the RS. DISCUSSION: did not affect this association. DPS (P < 0.001) returned concentrations considerably lower than the RS

    An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead.

    Get PDF
    Over the last twenty years, the characterization of Alzheimer's disease (AD) patients has progressed from a description of clinical symptomatology followed by neuropathological findings at autopsy to in vivo pathophysiological signatures using cerebrospinal fluid (CSF) and positron emission tomography (PET). Additionally, CSF biomarkers now reflect synaptic pathology, axonal injury and neuroinflammation. Novel techniques are capable of measuring proteins of pathophysiological importance at femtomolar concentrations in blood (e.g. amyloid, tau species and neurofilaments), which enable screening of large populations in the near future. This will be essential for secondary prevention trials and clinical management. However, common diseases such as dementia with Lewy bodies, Parkinson's disease and frontotemporal dementias, are still without reliable diagnostic biomarkers, although emerging techniques show promising pilot results for some of these diseases. This is likely to change in the next few years, which will be crucial to stratify populations enrolling in clinical trials, since pathologies often coexist

    Salivary Biomarkers for Alzheimer's Disease and Related Disorders

    Get PDF
    The search for accessible and cost-effective biomarkers to complement current cerebrospinal fluid (CSF) and imaging biomarkers in the accurate detection of Alzheimer disease (AD) and other common neurodegenerative disorders remains a challenging task. The advances in ultra-sensitive detection methods has highlighted blood biomarkers (e.g. amyloid-β and neurofilament light) as a valuable and realistic tool in a diagnostic or screening process. Saliva, however, is also a rich source of potential biomarkers for disease detection and offers several practical advantages over biofluids that are currently examined for neurodegenerative disorders. However, while this may be true for the general population, challenges in collecting saliva from an elderly population should be seriously considered. In this review, we begin by discussing how saliva is produced and how age-related conditions can modify saliva production and composition. We then focus on the data available which support the concept of salivary amyloid-β, tau species and novel biomarkers in detecting AD and alpha-synuclein (α-syn) in Parkinson’s disease (PD)

    Plasma REST: a novel candidate biomarker of Alzheimer's disease is modified by psychological intervention in an at-risk population.

    Get PDF
    The repressor element 1-silencing transcription (REST) factor is a key regulator of the aging brain's stress response. It is reduced in conditions of stress and Alzheimer's disease (AD), which suggests that increasing REST may be neuroprotective. REST can be measured peripherally in blood plasma. Our study aimed to (1) examine plasma REST levels in relation to clinical and biological markers of neurodegeneration and (2) alter plasma REST levels through a stress-reduction intervention-mindfulness training. In study 1, REST levels were compared across the following four well-characterized groups: healthy elderly (n=65), mild cognitive impairment who remained stable (stable MCI, n=36), MCI who later converted to dementia (converter MCI, n=29) and AD (n=65) from the AddNeuroMed cohort. REST levels declined with increasing severity of risk and impairment (healthy elderly&gt;stable MCI&gt;converter MCI&gt;AD, F=6.35, P&lt;0.001). REST levels were also positively associated with magnetic resonance imaging-based hippocampal and entorhinal atrophy and other putative blood-based biomarkers of AD (Ps&lt;0.05). In study 2, REST was measured in 81 older adults with psychiatric risk factors for AD before and after a mindfulness-based stress reduction intervention or an education-based placebo intervention. Mindfulness-based training caused an increase in REST compared with the placebo intervention (F=8.57, P=0.006), and increased REST was associated with a reduction in psychiatric symptoms associated with stress and AD risk (Ps&lt;0.02). Our data confirm plasma REST associations with clinical severity and neurodegeneration, and originally, that REST is modifiable by a psychological intervention with clinical benefit

    Fluid Biomarkers for Synaptic Dysfunction and Loss

    Get PDF
    Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer’s disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synapse dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synapse loss and then discuss the available data on established (eg, neurogranin, SNAP-25, synaptotagmin-1, GAP-43, and α-syn) and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synapse dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection

    Differences between blood and cerebrospinal fluid glial fibrillary Acidic protein levels: The effect of sample stability

    Get PDF
    Introduction: Recent evidence has shown that the marker of reactive astrogliosis, glial fibrillary acidic protein (GFAP), has a stronger relationship with cerebral amyloid beta (Aβ) pathology in blood than in cerebrospinal fluid (CSF). This study investigates if pre-analytical treatment of blood and CSF contribute to these unexpected findings. Methods: Paired CSF and serum samples from 49 individuals (Aβ-negative = 28; Aβ-positive = 21) underwent a series of seven freeze-thaw cycles (FTCs). All samples were analyzed for GFAP and neurofilament light (NfL) using single molecule array technology including a fresh unfrozen sample from each patient. Results: FTC significantly affected CSF GFAP concentration (−188.12 pg/ml per FTC) but not serum GFAP. In the same samples, NfL remained stable. Serum GFAP had a higher discrimination of Aβ burden than CSF GFAP, irrespective of FTC, which also included unfrozen samples. Discussion: This study demonstrates large stability differences of GFAP in CSF and serum. However, this disparity does not seem to fully explain the stronger association of serum GFAP with Aβ pathology. Further work should investigate mechanisms of GFAP release into the bloodstream under pathological conditions

    Plasma arginine vasopressin concentrations in epileptics under monotherapy

    Get PDF
    Plasma arginine vasopressin concentrations were determined by radio-immunoassay in 112 adult epileptics who were taking carbamazepine, phenytoin, primidone, or sodium valproate in long-term monotherapy, and in 19 controls. No significant difference was found between the groups, but some epileptics taking carbamazepine and primidone showed low values. Serum concentrations of carbamazepine did not correlate with the concentrations of plasma arginine vasopressin. In conclusion, there was no evidence of a stimulating effect of chronic carbamazepine medication or a special inhibiting effect of phenytoin on the release of vasopressin arginine from the posterior pituitary

    Proteomic blood profiling in mild, severe and critical COVID-19 patients

    Get PDF
    The recent SARS-CoV-2 pandemic manifests itself as a mild respiratory tract infection in most individuals, leading to COVID-19 disease. However, in some infected individuals, this can progress to severe pneumonia and acute respiratory distress syndrome (ARDS), leading to multi-organ failure and death. This study explores the proteomic differences between mild, severe, and critical COVID-19 positive patients to further understand the disease progression, identify proteins associated with disease severity, and identify potential therapeutic targets. Blood protein profiling was performed on 59 COVID-19 mild (n = 26), severe (n = 9) or critical (n = 24) cases and 28 controls using the OLINK inflammation, autoimmune, cardiovascular and neurology panels. Differential expression analysis was performed within and between disease groups to generate nine different analyses. From the 368 proteins measured per individual, more than 75% were observed to be significantly perturbed in COVID-19 cases. Six proteins (IL6, CKAP4, Gal-9, IL-1ra, LILRB4 and PD-L1) were identified to be associated with disease severity. The results have been made readily available through an interactive web-based application for instant data exploration and visualization, and can be accessed at https://phidatalab-shiny.rosalind.kcl.ac.uk/COVID19/. Our results demonstrate that dynamic changes in blood proteins associated with disease severity can potentially be used as early biomarkers to monitor disease severity in COVID-19 and serve as potential therapeutic targets
    corecore